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A B S T R A C T   

Haze pollution not only negatively influences public health but also causes great economic losses. However, most 
previous studies have mainly focused on health-related economic losses, while the negative effects of haze 
pollution on the tourism industry are often ignored, leading to the unsustainable development of tourism. In this 
context, contrasting with previous research perspectives, this article selected several representative tourist cities 
from East China, South China, Central China, North China, Northwest China, Southwest China, and Northeast 
China as research objects in an empirical study, developing an economic loss analysis system to quantitatively 
evaluate the losses in the tourism industry caused by haze pollution. This system uses the satin bower bird 
optimization-based distribution estimation method to identify the optimal distribution of haze pollution, 
demonstrating superior performance to the traditional estimation method. Meanwhile, the optimal distribution 
of haze pollution is employed to measure the probability of different concentration limits in each area. 
Furthermore, the economic loss formula of the tourism industry is proposed in the devised system, calculating the 
economic loss caused by haze pollution at different degrees. The results show that haze pollution in different 
degrees has caused varying degrees of losses to China’s tourism industry. In terms of seasonality and regionality, 
different seasons and different regions produce different results. Compared with summer, autumn and winter 
haze pollution is more severe, creating obvious seasonal differences. There is also a regional agglomeration 
effect, whereby the regional distribution of haze pollution is consistent with each region’s economic 
development.   

1. Introduction 

Air pollution is a major problem on a global scale, affecting human 
health and well-being (Jun et al., 2019; Wang et al., 2020d). One of the 
main pollutants is particulate matter with an aerodynamic diameter of 
less than 2.5 μm (PM2.5) (Li et al., 2019). Excessive PM2.5 content 
adversely affects human health, the ecosystem, and sustainable eco
nomic development (Wang et al., 2020a). The United States set the 
PM2.5 standard in 1997 and its Environmental Protection Agency (EPA) 
revised the standard in 2006 (Caiazzo et al., 2013). In 2011, China began 
to use gravimetric analysis to measure PM10 and PM2.5 in ambient air. 
This is the first time that the measurement of PM2.5 was standardized 
(Wang et al., 2020c). The Chinese government is gradually paying more 
attention to smog pollution. Since the large-scale outbreak of haze in 
2013, China’s air quality has continued to deteriorate (Wang et al., 

2018). The Travel & Tourism Competitiveness Report 2017 forum 
explained that of the 136 countries and economies that participated in 
its evaluation, China ranked first in the PM2.5 concentration of haze 
pollution and lowest in the tourism environment and tourism environ
mental sustainability. According to data released by the China Meteo
rological Administration, 2013 was the most severe year since 1961 in 
the average number of days China’s haze pollution appeared, leading to 
frequent flight delays, closures of scenic spots, and a high incidence of 
respiratory infections (Yang et al., 2020). Severe haze pollution nega
tively impacts the climate, environment, and every walk of life that is 
highly valued by people. However, it is generally believed that agri
culture, transportation, and other industries are more vulnerable to 
impacts on the ecological environment and climate conditions—the 
sensitivity of tourism to shifting ecological environment and climate 
conditions is ignored. As one of China’s pillar industries, tourism plays 
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an important role in transforming its economic structure, increasing the 
gross national product, and expanding employment. Although the issue 
of haze pollution’s impact on the tourism industry has received exten
sive attention from relevant departments, including government de
partments and regulatory agencies, to date there are no specific research 
conclusions. 

Rapidly developing after World War II, the tourism industry has 
consistently been considered both a sunrise industry and an environ
mental protection industry. China also has a large population and rich 
tourism resources, providing its tourism industry with huge develop
ment potential. However, tourism is mainly based on outdoor activities; 
therefore, the tourism industry is highly sensitive to climate, and the 
ecological environment and climatic conditions will directly affect its 
development (Qiang et al., 2020). For example, Sajjad et al. (2014) 
studied the causal relationship between air pollution and tourism 
development and found that air pollution and climate change negatively 
impact the development of tourism areas. Law and Cheung (2007) 
showed that poor air quality will reduce the satisfaction of tourists and 
affect the reputation of tourist destinations. Taking American National 
Forest Park as an example, Poudyal et al. (2013) pointed out that haze 
pollution reduces the number of tourists in scenic spots and affects their 
economic benefits. Haze pollution damages the image of tourist desti
nations, slows down the development of tourism, and reduces its eco
nomic benefits. Moreover, research by Gómez Martín (2005), Simpson 
and Siguaw (2008), Poudyal et al. (2013), and others on the impact of 
haze pollution on tourists’ experience has demonstrated how haze 
pollution affects the viewing quality of scenic spots and tourists’ overall 
experience. Relevant scholars have carried out a number of studies 
regarding the image problem of tourism destinations. Taking Beijing as a 
case study, Zhang et al. (2015) show that haze pollution greatly reduces 
the image of tourist scenic spots, affects tourists’ travel decisions, and 
causes some tourists to abandon their travel plans. Haze pollution 
greatly reduces the beauty of scenic spots and diminishes the image of 
tourist spots. 

Moreover, haze pollution affects the supply and demand of tourism, 
thereby affecting its economic benefits and seriously hindering further 
development. In other words, haze pollution has caused serious losses to 
the tourism industry. In 2013, affected by haze pollution, the number of 
inbound tourists received by Beijing was 4.501 million, and the foreign 
exchange income of inbound tourism was 4.795 billion USD. The 
number of inbound tourists and the foreign exchange of inbound tourism 
revenue had decreased by 10.1% and 6.9% year by year. However, 
although many scholars believe that haze pollution has serious and 
negative impacts on the tourism industry, few have estimated the eco
nomic losses caused by haze pollution within it. For example, Anaman 
and Looi (2000) studied the negative impact of smog activities in Brunei 
on the local tourism industry. The study found that the number of 
tourists during severely polluted months was significantly lower than in 
months without air pollution and believed that the haze generated direct 
economic losses in the local tourism industry. 

Accordingly, an economic loss analysis system based on the optimal 
distribution function of haze pollution is proposed to quantify the eco
nomic loss in the tourism industry, starting from the optimal distribution 
strategy. The distribution type of haze pollutant concentration is 
affected by many factors. For example, when regions or pollutants are 
different, the statistical distribution of haze varies (Jiang et al., 2019). 
Existing studies have used probability density functions to describe the 
distribution of pollutant concentrations and to determine the dispersal 
of pollutants, including Normal distribution and Gamma distribution. 
Commonly used calculation methods include the graphical method, the 
least square method, and maximum likelihood estimation (Jiang et al., 
2017). Although these methods are relatively simple in principle, their 
calculation accuracy is easily affected by subjective factors, resulting in 
relatively poor accuracy. With the rapid development of artificial in
telligence (AI) technology, an increasing number of AI optimization 
algorithms have been applied (Liu et al., 2021; Guan et al., 2019). 

Compared with traditional statistical methods, AI technology has 
obvious advantages (Wang et al., 2020b; Tian and Hao, 2019). There
fore, we constructed a pollutant distribution assessment of major tourist 
cities based on intelligent optimization. To obtain the optimal statistical 
distribution of haze pollution, this paper selects PM2.5 as the research 
object and uses AI optimization algorithms to determine the optimal 
distribution function of PM2.5 and identify the corresponding probabil
ity of different PM2.5 concentration limits. Then, we analyze suggestions 
for people’s activities under different air quality standards and quantify 
the impact of different pollution levels on the tourism industry. The 
main process framework of this article is shown in Fig. 1. 

Compared with existing research methods in the literature, the 
innovation and novelty of this article are as follows：  

(1) An artificial intelligence optimization algorithm was used to 
evaluate the optimal distribution function of the main 
pollutant of haze. The AI optimization algorithm generates 
more accurate model parameters for relevant haze pollutant data, 
which is an important factor in evaluating the economic loss haze 
pollution causes in the tourism industry.  

(2) Establish a loss assessment system to quantify the economic 
loss of the tourism industry caused by haze pollution. Based 
on the optimal distribution of haze pollution, this paper designs a 
theoretical framework for measuring the economic loss of haze 
pollution to the tourism industry and expands the research on the 
evaluation of the economic loss of the tourism industry caused by 
haze pollution.  

(3) Quantify the economic loss of haze pollution in China’s 
tourism industry. Fourteen important tourist cities in China’s 
seven geographical regions (Northeast China, East China, North 
China, Central China, South China, Southwest China, and 
Northwest China) were selected as the research samples, and the 
loss assessment system established in this paper was used to 
calculate the economic losses caused by haze pollution within 
China’s tourism industry. The results show that haze pollution 
has caused huge economic losses in China’s tourism industry. 

(4) The construction of an economic loss analysis system pro
vides a new method to evaluate and analyze the economic 
loss of haze pollution. The economic loss evaluation system 
constructed in this paper can effectively evaluate the economic 
loss caused by haze pollution in the tourism industry and provide 
guidance and support for the tourism industry’s healthy devel
opment. In addition, it can function as a theoretical reference for 
evaluating other economic losses. 

2. Process of constructing the economic loss analysis system 

Pollutant concentration data can be used to evaluate air quality in 
tourist areas and as an effective basis for pollutant control. The statis
tical distribution function of haze pollution can quantify the corre
sponding probability of different haze pollutant concentration limits. 
The probability of occurrence under different levels of haze pollution 
can be obtained, and the economic losses caused to the tourism industry 
can be measured according to the harm caused by different haze 
pollution conditions. Therefore, to evaluate the economic loss caused by 
haze pollution in the tourism industry, this study designs an economic 
loss analysis system based on the optimal distribution function of haze 
pollution. 

2.1. Evaluation strategy for the statistical distribution of haze pollutant 
concentrations 

To determine the best distribution function of PM2.5 pollutants, we 
used four commonly used distribution functions: Weibull distribution, 
Gamma distribution, Rayleigh distribution, and Lognormal distribution. 
There are many methods for estimating the parameters of a distribution 
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function. In this paper, when determining the method of unknown pa
rameters in our distribution function, we chose two methods for com
parison (traditional maximum likelihood estimation (MLE) and artificial 
intelligence optimization algorithms (SBO)), identifying the pros and 
cons of the two methods via the fitness evaluation index R2.  

(1) Maximum likelihood estimation (MLE) 

Maximum likelihood estimation is a parameter estimation, and its 
theoretical basis is the principle of maximum likelihood. The introduc
tion to MLE is as follows: 

Let f(xi, θ) be the probability density function of a certain time series, 
and then use the maximum likelihood estimation method to estimate the 
parameterθ. 

Construct the likelihood function: L(θ) = L(x1,x2,...,xn; θ) =
∏n

i=1
f(xi,

θ), θ is the parameter to be estimated, and xi is the i-th observation value 
of the sample. 

Logarithmically process the likelihood function to obtain ln L(θ). If 
there is a value of ̂θ that satisfies the following formula: L(x1,x2,...,xn; θ̂)

= max
∏n

i=1
f(xi, θ), then θ̂is the maximum likelihood estimate of θ. 

Because the extreme points of L(θ)and ln L(θ)are the same, perform 
derivative processing onln L(θ): d

dθ ln L(θ) = 0. Solve the likelihood 
equations to obtain the optimal parameter estimates θ̂.  

(2) Artificial intelligence optimization algorithm 

In recent years, many new swarm intelligence algorithms have 
emerged (Hao and Tian, 2020; Hao et al., 2020). The Satin Bower Bird 
Optimization algorithm (SBO) is a new type of meta-heuristic optimi
zation algorithm proposed by Moosavi et al. (Samareh Moosavi and 
Khatibi Bardsiri, 2017). It combines operations such as dynamic step 
size and mutation. The algorithm has good search performance and has 
been successfully applied in many fields. Therefore, the SBO algorithm is 
chosen to optimize the parameters of the distribution function and 
determine the optimal distribution function of haze pollution. 

According to the living habits of satin blue gardener birds, the main 
process of the SBO algorithm is as follows: 

An initial population containing N individuals is randomly gener
ated, the variable to be optimized is D-dimensional, and the current 
evolutionary algebra is t. 

Calculate the fitness value of each individual fiti. 

P=
fiti

∑N

i=1
fitn

, fiti =

⎧
⎪⎨

⎪⎩

1
1 + f (xi)

, f (xi) ≥ 0

1 + |f (xi)|, f (xi) < 0
(1)  

f(xi) is the cost function of the i-th individual. The cost function is the 
objective function, and each iteration ensures that the value of the 
objective function keeps decreasing. 

Location update : xt+1
ik = xt

ik + λk

((xjk + xelite,k

2

)
− xt

ik

)
(2)  

where xt+1
ik is the k-th component of the i-th individual of the tþ1- 

generation, xjkis the k-th dimension component of the currently 

Fig. 1. The main framework of this paper.  
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obtained optimal position, j is determined by the roulette mechanism, 
xelite,k is the current optimum of the entire population position, λk = α

1+pj 

is the step length factor (α is the maximum step size, and pjis the 
probability of the target courtship pavilion being selected). 

Mutations: At the end of each cycle of each algorithm, there is a 
probability that random mutation will occur, and xikobeys the normal 
distribution: 

xt+1
ik ∼ N

(
xt

ik, σ2)

N
(
xt

ik, σ2) = xt
ik + (σ*N(0, 1))

σ = z*(varmax − varmin)

(3)  

Where z is the scaling factor. 
Combine the old population and the population obtained from the 

mutation, evaluate the function value of each individual, and keep the 
individual with the smallest function value. 

Pexcellent =

∫ 35

0
f (x)dx (4)  

Pgood =

∫ 75

35
f (x)dx (5)  

Plight pollution =

∫ 115

75
f (x)dx (6)  

Pmoderate pollution =

∫ 150

115
f (x)dx (7)  

Pheavy pollution =

∫ 250

150
f (x)dx (8)  

Psevere pollution =

∫ ∞

250
f (x)dx (9)  

2.2. Economic loss evaluation systematic theoretical framework 

Based on the optimal distribution of haze pollution, this paper de
signs an evaluation system to measure the economic loss of haze 
pollution in the tourism industry. The main theoretical framework of the 
system is designed as follows: 

(1) Evaluation of the optimal distribution function of haze pollution. 
To obtain the optimal statistical distribution of haze pollution, this 
paper selects PM2.5 as the research object and uses artificial intelli
gence optimization algorithms to determine the optimal distribution 
function f(x) of haze pollution PM2.5. 
(2) Determine the corresponding probability of different PM2.5 
concentration limits in the study area. Air quality includes six levels, 
which correspond to the six limits of PM2.5 concentration, as shown 
in Table 1(Sheng et al., 2015; Liu et al., 2020). According to the 
optimal distribution function f(x) of PM2.5, the corresponding 
probabilities of different air quality standards in various 

regions—excellent, good, light pollution, moderate pollution, heavy 
pollution, and serious pollution—can be obtained. 
(3) Calculate the economic loss of tourism under different pollution 
levels. Table 1 gives suggestions for people’s activities under 
different air quality standards. Specifically, when the air quality 
standard is excellent, all people can travel normally. In other words, 
smog pollution does not cause economic losses to the tourism in
dustry. When the air quality standard is good, it is recommended that 
a small number of sensitive people reduce outdoor activities. Simply 
put, when the air quality is good, it can be regarded as haze pollution 
that does not cause economic losses to the tourism industry. When 
the air quality is light pollution, the elderly, children, and patients 
with respiratory diseases should reduce outdoor activities. Consid
ering the susceptibility of older adults to respiratory disease and the 
availability of data, we hypothesize that haze pollution only affects 
the tourism industry by affecting the travel of the elderly and chil
dren when the air quality is light pollution. Similarly, when the air 
quality is moderate pollution, this article suggests that haze pollution 
impacts the elderly and children. In addition, when the air quality is 
heavy pollution or serious pollution, the general population should 
avoid outdoor exercise. Therefore, it follows that when the air 
quality is heavy pollution or serious pollution, haze pollution affects the 
tourism industry by preventing all people from going outside. In 
sum, when the air quality is light pollution, moderate pollution, heavy 
pollution, and serious pollution, haze pollution causes economic losses 
in the tourism industry. Defining the domestic tourism income of a 
certain area as Y1, the domestic tourism economic loss caused by 
haze pollution within the tourism industry is: 

Slight pollution =Y1
/(

1 − Plight pollution * Pelderly+children
)
− Y1 (10)  

Smoderate pollution =Y1
/(

1 − Pmoderate pollution * Pelderly+children
)
− Y1 (11)  

Sheavy pollution =Y1
/(

1 − Pheavy pollution
)
− Y1 (12)  

Ssevere pollution =Y1
/(

1 − Psevere pollution
)
− Y1 (13)  

S= Slight pollution + Smoderate pollution + Sheavy pollution + Ssevere pollution (14)  

Pelderly+childrenis the sum of the proportions of the elderly and children in a 
certain year in China. Slight pollution, Smoderate pollution, Sheavy pollution, and 
Ssevere pollutionare the losses caused to the domestic tourism industry when 
the air quality standards are light pollution, moderate pollution, heavy 
pollution, and serious pollution, respectively, and Sis the total loss caused 
by haze pollution in domestic tourism income. 

We define the tourism foreign exchange income of a certain area as 
Y2, and the loss of tourism foreign exchange income caused by haze 
pollution to the tourism industry is: 

Qlight pollution =Y2

/(
1 − Plight pollution * P′

elderly+children

)
− Y2 (15)  

Qmoderate pollution =Y2

/(
1 − Pmoderate pollution * P′

elderly+children

)
− Y2 (16) 

Table 1 
PM2.5 level and activity recommendations.  

Air quality PM2.5 concentration（ug/m3） Activity recommendations 

excellent 0–35 Everyone can exercise normally outdoors 
good 35–75 A small number of sensitive people reduce outdoor activities 
light pollution 75–115 Elderly, children, and patients with respiratory diseases reduce outdoor activities 
moderate pollution 115–150 Elderly, children, and patients with respiratory diseases should avoid outdoor activities 
heavy pollution 150–250 The elderly, children, and patients with lung diseases should stop outdoor activities, and the  

general population should reduce time outdoors 
serious pollution >250 The elderly, children, and patients should only be active indoors, and the general population  

should avoid outdoor activities  
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Qheavy pollution = Y2
/(

1 − Pheavy pollution
)
− Y2 (17)  

Qsevere pollution = Y2
/(

1 − Psevere pollution
)
− Y2 (18)  

Q=Qlight pollution + Qmoderate pollution + Qheavy pollution + Qsevere pollution (19)  

where P′

elderly+childrenrepresents the proportion of the elderly and children 
in a certain year abroad; Qlight pollution, Qmoderate pollution, Qheavy pollution, and 
Qsevere pollutionare the tourism foreign exchange income when the air 
quality standards are light pollution, moderate pollution, heavy pollution, 
and severe pollution, respectively, and Q is the total loss caused by 
pollution in foreign exchange income from tourism. 

3. Study area 

China’s regional and large-scale haze pollution mainly occurs within 
three major urban agglomerations in the Yangtze River Delta, the Pearl 
River Delta, and the Beijing-Tianjin-Hebei, and the central Liaoning 
urban agglomeration, the Changzhutan urban agglomeration, and the 
Chengdu-Chongqing Economic Zone. In these regions, the density of 
cities is high, energy consumption is concentrated, and the tourism in
dustry is relatively developed, comprising a large proportion of China’s 
tourism output. Affected by the spread and transportation of pollution 
due to weather conditions, the air pollution in small- and medium-sized 

cities around metropolitan areas has become increasingly serious, 
causing mounting economic losses. 

China is generally divided into seven geographic regions. To evaluate 
the economic loss of haze to China’s tourism industry, this study selects 
fourteen cities from Northeast China, East China, North China, Central 
China, South China, Southwest China, and Northwest China as its research 
objects. The detailed geographic location labeling of the selected 14 
major tourist cities in China’s seven regions is shown in Fig. 2. 

4. Evaluation results of haze pollution distribution in tourist 
cities 

The distribution function has been widely used in many specific 
research fields. For example, Sun et al. (2013) used Gaussian, Loga
rithmic normal (Lognormal), Gamma, and generalized extreme value 
distributions to simulate the distribution function of PM2.5; Song et al. 
(2015) selected the Weibull distribution, Rayleigh distribution, 
Lognormal distribution, and Gamma distribution to evaluate the distri
bution function of PM pollutants. Therefore, given the PM2.5 pollutant 
concentration x, this study employs four commonly used air quality 
distribution functions (Xu et al., 2017)—Weibull, Gamma, Rayleigh, and 
Lognormal distributions—to fit the observation data of haze pollution in 
typical tourist cities. The probability density functions of the four dis
tribution functions are shown in Table 2. 

Fig. 2. The distribution of seven geographical regions in China.  
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4.1. Description of statistical characteristics 

This study comprehensively considers factors such as the number of 
inbound tourists and geographical distribution, selecting 14 cities from 
the seven geographic regions of China (Northeast China, East China, 
North China, Central China, South China, Southwest China, and 
Northwest China) as the study object (a total of 14 key tourist cities: 
Harbin, Dalian, Jinan, Hangzhou, Beijing, Shijiazhuang, Zhengzhou, 
Wuhan, Guangzhou, Haikou, Chengdu, Chongqing, Urumchi, and 
Xi’an). 

Compared with other regions, the average concentration of PM2.5 in 
North China, East China, Northwest China, and Central China is rela
tively higher, and the air quality is worse than in South China. Within 
North China, Shijiazhuang City has the highest average concentration of 
PM2.5, reaching 71.2676 μg/m3. Jinan City is located in North China, 
where the average concentration of PM2.5 has reached 56.2584 μg/m3. 
The average concentration of PM2.5 in Xi’an, located in Central China, 
reached 60.9224 μg/m3, and its highest daily average concentration 
reached an astonishing 493 μg/m3. The detailed data is shown in 
Table 3. 

4.2. Result of the optimal distribution function 

To obtain the optimal distribution function of PM2.5 pollutants in 
each tourist city and better understand the characteristics of the relevant 
pollutant concentration, we use four distribution functions: Weibull 
distribution, Gamma distribution, Rayleigh distribution, and Lognormal 
distribution modeling of the PM2.5 data sequence. According to the 
fitness evaluation index R2, two evaluation methods—namely, 
maximum likelihood estimation (MLE) and the satin blue gardener bird 
(SBO) optimization algorithm—are applied to determine the distribu
tion of pollutants. The larger the R2 value is, the better the fit between 
the cumulative probability of fitting and the cumulative probability of 
experience (Wang et al., 2015). Appendix A1 and Fig. 3 display the re
sults of the distribution fitting. According to the R2 value, the MLE and 

SBO strategies have achieved good fitting results, while the satin blue 
gardener bird optimization algorithm is effective for haze pollution. The 
degree of fit R2 of the concentration distribution function is greater than 
that of the MLE, indicating that SBO has good fitting performance. 
Taking Beijing as an example, the R2 of SBO for the four distribution 
functions are 0.9983, 0.9991, 0.9554, and 0.9977, which are 0.0047, 
0.0051, 0.1128, and 0.0003 higher than the R2 value estimated by MLE. 
This shows that the artificial intelligence optimization algorithm based 
on the SBO algorithm has a good fitting effect. According to the degree 
of fit R2 of different distribution functions of each city, the optimal 
distribution function of PM2.5 in different tourist cities varies; the 
optimal distribution function of Beijing PM2.5 is the gamma distribution 
and the optimal distribution function of Shijiazhuang PM2.5 is the 
lognormal distribution function. Meanwhile, Appendix A2 shows the 
distribution parameters, and Appendix A3 lists the estimated values of 
the distribution parameters based on the MLE and SBO methods. Ac
cording to the estimated values of the distribution parameters obtained 
by the SBO method, the specific distribution functions of the PM2.5 series 
of haze pollution in Beijing and Shijiazhuang can be obtained as shown 
in Eqs. (20) and (21): 

f (x; k, θ) = x0.5587 exp( − x/29.8773)
/(

29.87731.5587τ(1.5587)
)
, x > 0 (20)  

f (x; μ, σ)= 1
x*0.7345*

̅̅̅̅̅
2π

√ exp
(
− (ln x − 3.9878)2 / 2 * 0.73452), x > 0

(21) 

In East China, taking Hangzhou as an example, the R2 values of the 
SBO algorithm for the four distribution functions are 0.9942, 0.9997, 
0.9933, and 0.9999, which are 0.0059, 0.0026, 0.0146, and 0.0004 
higher than the R2 values estimated by MLE, respectively. According to 
the maximum R2 values of the different distribution functions of 
Hangzhou and Jinan, the best fitting distribution functions of Hangzhou 
and Jinan PM2.5 are lognormal distribution functions. In addition, 
Appendix A3 shares the parameter estimates based on the MLE and SBO 
methods. According to the best fitting distribution function of each city 
and the distribution parameter estimated values obtained by the SBO 
method, the specific PM2.5 series of Hangzhou and Jinan’s distribution 
function formulas, as shown in Eqs. (22) and (23): 

f (x; μ, σ)= 1
x*0.5772*

̅̅̅̅̅
2π

√ exp
(
− (ln x − 3.5157)2 / 2 * 0.57722), x > 0

(22)  

f (x; μ, σ)= 1
x*0.5940*

̅̅̅̅̅
2π

√ exp
(
− (ln x − 3.8390)2 / 2 * 0.59402), x > 0

(23)  

Table 2 
Probability density function of haze pollutant concentration distribution.  

Distribution type Probability density function Statistical 
parameters 

Weibull 
distribution 

f(x; λ,k) = k/λ(x/λ)k− 1 exp[ − (x/λ)k],
x ≥ 0  

Scale：λ > 0 
Shape：k > 0  

Gamma 
distribution 

f(x; k,θ) = xk− 1 exp( − x /θ)/θkτ(k),
x > 0  

Scale：θ > 0 
Shape：k > 0  

Rayleigh 
distribution 

f(x; σ) = x/σ2 exp( − x2 /2σ2),x ≥ 0  Scale：σ > 0  

Lognormal 
distribution 

f(x; μ,σ) = 1/xσ
̅̅̅̅̅̅
2π

√
exp( −

(ln x − μ)2
/2σ2),x > 0  

Scale：σ > 0 
Location：μ > 0   

Table 3 
Basic statistical characteristics of PM2.5 observation data.  

Geographical area Selected city Mean Maximum Standard deviation skewness kurtosis 

Northeast Harbin 45.8694 455 51.5501 3.2056 17.2808 
Dalian 32.4511 243 26.3482 2.7059 13.8386 

East China Jinan 56.2584 289 39.0679 2.1845 9.9718 
Hangzhou 40.1178 186 24.2214 1.6640 6.7851 

North China Beijing 48.8155 454 43.9571 2.7697 16.6140 
Shijiazhuang 71.2676 445 59.9219 2.1687 8.7951 

Central China Zhengzhou 56.6584 355 50.6442 2.1791 9.0942 
Wuhan 47.2192 223 31.0032 1.5912 6.4003 

South China Guangzhou 32.6037 155 18.3643 1.6780 7.9073 
Haikou 18.0228 73 10.7490 1.6387 6.2806 

Southwest Chengdu 47.3607 313 35.7815 2.1052 10.0325 
Chongqing 39.5680 171 25.5809 1.9035 7.4035 

Northwest Urumchi 55.8895 360 59.6294 1.8728 6.4779 
Xi’an 60.9224 493 57.4297 2.5739 12.5090  
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5. The loss caused by haze pollution in the tourism industry 

Before evaluating the damage caused by haze pollution to the 
tourism industry, it is necessary to determine the probability of different 
PM2.5 concentration limits within each region. According to the optimal 
distribution function of haze pollutant PM2.5 obtained above, the cor
responding probability under the limit of PM2.5 concentration in 
different regions can be calculated, and the calculation results are shown 
in Appendix B1. Taking PM2.5 concentration limit 0–35 as an example, 

the probability of Hangzhou in Central China is 0.5274, the probability 
of Guangzhou in South China is 0.6621, the probability of Wuhan in 
Central China is 0.4264, the probability of Beijing in North China is 
0.4740, the probability of Xi’an in Northwest China is 0.3902, the 
probability of Chongqing in Southwest China is 0.5537, and the prob
ability of Dalian in Northeast China is 0.6957. The corresponding 
probabilities of other PM2.5 concentration limits in each region are 
detailed in Appendix B1. 

Next, according to the economic loss formula of tourism under 

Fig. 3. The sequences and probability density functions of several distributions.  
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different pollution levels in Chapter 3, we can obtain the economic loss 
caused by haze pollution in each region. 

To obtain the economic loss caused by haze pollution in China’s 
tourism industry, the domestic tourism income and tourism foreign 
exchange income of 14 key tourist cities from 2017 to 2019 were 
selected as the research objects. A brief description of the data and a 
rough loss result are explained in Fig. 4, and more detailed results are 
discussed below. The data come from the annual statistical bulletins and 
statistical yearbooks of each tourist city. The total proportion of the 
elderly and children is the total population aged 0–14 and the popula
tion aged 65 and over in China from 2017 to 2019, via data from the 

National Bureau of Statistics. The total proportion of the elderly and 
children in foreign countries is the total world population aged 0–14 and 
the population aged 65 and over (the proportion of the elderly and 
children in 2019 is the average value of 2017 and 2018). These statistics 
come from the World Bank database. Significantly, the tourism data of 
Dalian and Wuhan in 2019 have not been released, so only the domestic 
tourism income and foreign exchange income from tourism in Dalian 
and Wuhan from 2017 to 2018 are selected as the research objects in this 
study. In addition, for Xi’an, only the total tourism revenue (the sum of 
domestic tourism revenue and foreign exchange income from tourism) 
data is released for tourism data. Therefore, the tourism revenue of Xi’an 

Fig. 4. (a) Shows the corresponding probability of different PM2.5 concentration limits in various regions; (b) shows the annual tourism revenue of each city in 2018; 
(c) is the loss of domestic tourism revenue in each city during 2018; and (d) represents the loss of foreign exchange income from tourism in each city during 2018. 
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from 2017 to 2019 is selected as the research object, and the data 
originate in the statistical bulletins and statistical yearbooks of various 
years in Xi’an. The data on annual tourism revenue and the population 
age structure are displayed in Appendix B3, Appendix B4, and Appendix 
B5. The specific number of tourists in each city is shown in Appendix B2. 

5.1. Analysis of the economic loss of haze pollution in the tourism 
industry 

Appendices C1-C8 show the economic loss value caused by haze 
pollution in the tourism industry in 14 cities of the seven major regions. 

In Northeast China, for Dalian, from 2017 to 2018, the losses caused 
by haze pollution in domestic tourism income were 22.9163 and 
26.2810 hundred million RMB, respectively, and the losses caused by 
haze pollution foreign exchange income were 1191.9467 and 
1239.0478 ten thousand USD, respectively. These accounted for 
0.3112%, 0.3427% and 0.0104%, 0.0103% of GDP in the corresponding 
years. For Harbin, from 2017 to 2019, haze pollution caused economic 
losses of 83.4736, 98.7990, and 113.0492 hundred million RMB in its 
domestic tourism income, accounting for 1.3135%, 1.5681%, and 
2.1537% of GDP, respectively, as well as losses of 1068.5499, 886.3142, 
and 2726.3539 ten thousand USD in tourism foreign exchange income, 
respectively. 

East China, taking Jinan and Hangzhou in East China as the research 
objects, the economic loss of these two cities under the haze pollution 
was evaluated and studied. Appendix C2 shows the economic loss of the 
tourism industry caused by haze pollution in Hangzhou and Jinan. It can 
be seen that haze pollution has caused serious losses to both Hangzhou 
and Jinan. From the perspective of the total loss of tourism economy, 
Hangzhou’s loss of foreign exchange income from tourism from 2017 to 
2018 far exceeded that of Jinan. Although the air quality management 
level of Hangzhou far exceeds that of Jinan, its annual foreign exchange 
income from tourism far exceeds that of Jinan. Specifically, the losses 
caused by haze pollution to Jinan City and Hangzhou City’s tourism 
foreign exchange earnings losing from 2017 to 2018 were: 1916.5159, 
2053.2590 ten thousand USD and 11393.0844, 12343.2121 ten thou
sand USD, separately, accounting for 0.0170%, 0.0167% and 0.0579%, 
0.0585% of their respective cities’ GDP. 

Appendix C3 displays the economic loss in the tourism industry 
caused by haze pollution in Beijing and Shijiazhuang. For Beijing, from 
2017 to 2019, haze pollution caused losses of 347.0250, 382.2633, and 
409.2323 hundred million RMB in its domestic tourism revenue, ac
counting for 1.1613%, 1.1547%, and 1.1546% of its GDP, respectively. 
Beijing’s losses in tourism foreign exchange revenue were 40379.3650, 
43619.0386, and 41013.4956 ten thousand USD, respectively. 
Regarding Shijiazhuang, from 2017 to 2019, haze pollution caused 
losses of 155.3773, 197.6761, and 236.0014 hundred million RMB in its 
domestic tourism revenue, accounting for 2.4049%, 3.2499%, and 
4.0620% of its GDP, respectively. Shijiazhuang’s losses in tourism 
foreign exchange income were 1650.4251 and 1696.2057 and 
1839.2190 ten thousand USD, respectively. Of the 14 cities in the seven 
regions studied, Beijing and Shijiazhuang suffered the highest economic 
losses. 

In Central China, for Zhengzhou City, from 2017 to 2019, light haze 
pollution caused losses of 50.8248, 60.4205, and 71.0526 hundred 
million RMB, respectively. Moderate haze pollution caused losses of 
16.7092, 19.8515, and 23.3314 hundred million RMB; heavy haze 
pollution caused losses of 46.6253, 54.2013, and 62.4816 hundred 
million RMB. Finally, serious haze pollution brought losses of 9.0377, 
10.5062, and 12.1112 hundred million RMB, respectively. The losses 
caused by light haze pollution are the most serious, accounting for 
0.5567%, 0.5957%, and 0.6131% of Zhengzhou’s GDP, respectively. 
From 2017 to 2018, haze pollution heavily impacted Wuhan’s domestic 
tourism revenue and tourism foreign exchange revenue. Losses of 
147.6335 and 168.8019 hundred million RMB occurred within its do
mestic tourism income, accounting for 1.1009% and 1.1369% of 

Wuhan’s GDP, respectively. Losses of 10800.1165 and 12035.8541 ten 
thousand USD occurred in foreign exchange income from tourism, 
respectively. 

To assess the economic loss of haze pollution in the tourism industry 
of South China, Guangzhou and Haikou were selected as the research 
objects. For Guangzhou, from 2017 to 2019, haze pollution had a greater 
impact on foreign exchange income from tourism, causing losses of 
8372.5706, 8615.5701, and 8669.1814 ten thousand USD to foreign 
exchange income from tourism. These accounted for 0.0249%, 
0.0241%, and 0.0235% of Guangzhou’s GDP, respectively. Haikou’s air 
quality is better than other areas, and haze pollution causes less damage 
to its tourism industry. In general, from 2017 to 2019, haze pollution 
caused losses of 0.1989, 0.2267, and 0.2475 hundred million RMB in 
Haikou’s domestic tourism revenue, respectively. The damage caused 
losses in its tourism foreign exchange revenue of 5.4842, 7.5855, and 
9.2489 ten thousand USD, respectively. 

The economic losses of haze pollution to tourism in Chengdu and 
Chongqing are detailed in Appendix C6. From 2017 to 2019, haze 
pollution caused losses of 188.2850, 234.3231, and 298.5287 hundred 
million RMB in Chengdu’s domestic tourism revenue, accounting for 
1.3556%, 1.5273%, and 1.7547% of its GDP, respectively. It also caused 
losses of 9563.4725, 10632.0311, and 11915.3166 ten thousand USD in 
tourism foreign exchange revenue, accounting for 0.0441%, 0.0443%, 
and 0.0448% of Chengdu’s GDP, respectively. For Chongqing, haze 
pollution caused a loss of 82.6188, 115.0032, and 150.2343 hundred 
million RMB in domestic tourism revenue, respectively, from 2017 to 
2019, accounting for 0.4117%, 0.5327%, and 0.6364% of Chongqing’s 
GDP. Its loss in foreign exchange income of tourism was 6013.7963, 
6776.6924, and 6769.6729 ten thousand USD, respectively. 

Urumqi and Xi’an are selected as research objects in the Northwest 
region. From 2017 to 2019, haze pollution caused 55.5233, 87.0095, 
and 145.1908 hundred million RMB of losses in Urumqi’s domestic 
tourism revenue, accounting for 2.0236%, 2.8070%, and 4.2541% of its 
GDP, respectively. It also caused losses of 2456.1762, 2682.1089, and 
1713.7070 ten thousand USD in foreign exchange tourism income, 
respectively. For Xi’an, from 2017 to 2019, haze pollution caused losses 
of 207.0250, 325.6466, and 402.6449 hundred million RMB in tourism 
revenue in Xi’an, accounting for 2.7715%, 3.9000%, and 4.3198% of its 
GDP, respectively. 

5.2. Influence of seasonality in haze pollution on economic loss in the 
tourism industry 

Compared with summer, haze pollution is more serious in fall and 
winter, especially in the northern areas in China, where the seasonal 
difference is clearer. This is because most northern areas of China need 
heating in late fall and winter, and China’s heating is still dominated by 
the burning of coal, which is the main source of haze pollution. To 
measure the impact of the seasonality of haze pollution on the economic 
losses in the tourism industry, taking Beijing as an example, we use 
quarterly data to identify the difference in the impact of haze pollution 
on the tourism industry. Here, the first quarter through the fourth 
quarter approximate winter, spring, summer, and autumn, respectively. 
First, we evaluate the optimal distribution function of haze pollution in 
different quarters, and the quarterly distribution fitting results of Beijing 
are shown in Appendix D1. Based on Appendix D1, it is evident that the 
optimal distribution functions of haze pollution in different quarters 
vary, following Weibull distribution, Gamma distribution, Weibull dis
tribution, and Gamma distribution, respectively. Based on the quarterly 
distribution fitting results and the economic loss assessment method 
proposed in this study, the quarterly economic losses caused by haze 
pollution are obtained, as shown in Appendix D2. Based on the results 
listed in Appendix D2, when compared with the second quarter and third 
quarter, the economic losses caused by haze pollution in the tourism 
industry are more serious during the first and fourth quarters. This in
dicates that when haze pollution is more serious in autumn and winter, 
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so too are the economic losses in the tourism industry. Moreover, the 
economic loss in the tourism industry caused by haze pollution during 
the first quarter is the most serious because smog pollution is at its worst 
during winter in China. Therefore, we can reasonably conclude that the 
seasonal differences of haze pollution generate relative seasonal impacts 
on the economic losses in the tourism industry. 

5.3. The analysis of regional heterogeneity  

(1) There is a regional agglomeration effect: high-concentration 
areas are in the central and northern parts of the east, such as 
Henan, Jiangsu, and Shandong. The Beijing-Tianjin-Hebei and 
Yangtze River Delta are all heavily polluted areas. Although the 
haze pollution situation in Beijing and Shanghai has improved, 
they are still heavily polluted areas.  

(2) It presents regional characteristics of low in the west and high in 
the east, mainly related to economic development and climatic 
conditions: the haze pollution in the east region is the most 
serious, while the situation in the central and west regions are 
better than in the east. The regional distribution difference of 
haze pollution matches the economic development in each re
gion. In addition, Hainan, Heilongjiang, and other provinces and 
cities in the east and central regions have relatively low pollution 
levels that are inseparable from climatic conditions. 

5.4. The analysis of practical significance in this research 

With the gradual transformation of the tourism industry to "leisure 
vacation", the environment of tourist destinations, including weather 
conditions, has become an important consideration. Tourists attach 
great importance to the weather conditions, whereby the role of the 
environment in their travel decisions has become increasingly promi
nent. As a significant contributor to environmental pollution in recent 
years, haze pollution offers a new perspective for research on climate 
change and the tourism industry. At present, tourism is an indispensable 
part of people’s daily lives and the tourism industry is one of the largest 
foreign exchange earning industries. Thus, environmental problems 
represented by smog pollution are a serious threat to the development of 
China’s tourism industry. As an industry that can foster the development 
of other industries, tourism has a significantly positive role in China’s 
industrial adjustment and its ongoing high-quality economic develop
ment. With the emergence of the global effects and awareness of climate 
change, the impact of the tourism industry on the high-quality devel
opment of the economy has become increasingly important. Evaluating 
the economic losses caused by China’s tourism industry through haze 
pollution demonstrates the impact of haze pollution on the tourism in
dustry and quantifies the related economic losses. This is critical 
research into how the tourism industry responds to haze pollution in 
China, with practical significance to the promotion and sound devel
opment of China’s rapidly expanding and powerful tourism industry. 
Moreover, this research can help ordinary people intuitively understand 
the impact on and economic losses caused by haze pollution in the 
tourism industry. The government and relevant departments formulate 
haze pollution control policies to provide support and reference, which 
has important practical significance for facilitating the ongoing devel
opment of China’s tourism industry and reducing any economic losses 
caused by haze pollution. 

6. Conclusion 

To calculate the economic losses caused by haze pollution in the 
tourism industry, based on the optimal distribution function of haze 

pollution, this study measures the economic losses caused in the tourism 
industry of China and constructs an economic loss analysis system. First, 
an artificial intelligence optimization algorithm is used to optimize the 
distribution function of the haze pollutant PM2.5 in each region. Next, 
the corresponding probability of different PM2.5 concentration limits in 
each region is calculated. The tourism economic loss formula is then 
used to evaluate the economic losses caused by different degrees of haze 
pollution in the tourism industry. Moreover, a total of 14 representative 
tourist cities were selected from the seven geographical regions of China 
as the research objects. The results of this study show that the concen
tration of PM2.5 in light pollution, moderate pollution, heavy pollution 
and serious pollution has produced varying degrees of losses to the 
tourism industry of China. Take Beijing as an example, in 2019, light 
haze pollution, moderate haze pollution, heavy haze pollution and 
serious haze pollution caused 223.5560, 65.1302, 115.2030 and 5.3432 
hundred million RMB, Accounting for 0.6307%, 0.1837%, 0.3250% and 
0.0151% of Beijing’s GDP in corresponding years, respectively. Caused 
23518.8706, 6818.5966, 10202.8164 and 473.2120 ten thousand USD 
foreign exchange income losses, respectively, the total of foreign ex
change income losses accounting for 0.0741% of Beijing’s GDP in cor
responding years. 

With respect to seasons, compared with summer, haze pollution is 
more serious during autumn and winter, especially in northern China, 
where seasonal differences are more obvious. Given the seasonal dif
ference in haze pollution, its impact on the economic losses in the 
tourism industry varies according to the season. Moreover, there is a 
regional agglomeration effect, whereby the regional distribution of haze 
pollution is consistent with the economic development in each region. In 
general, the economic loss analysis system established in this paper 
effectively quantifies the economic loss caused by haze pollution in the 
tourism industry in China, thereby providing guidance and support for 
the development of the tourism industry. Evaluating the economic losses 
caused by haze pollution in the tourism industry has important practical 
significance for improving air quality and promoting the healthy 
development of tourism. Furthermore, utilizing historical data drawn 
from the specified haze pollution periods, the proportion of tourists 
affected by haze is calculated, whereby the economic loss of haze 
pollution caused in the tourism industry is evaluated. This better reflects 
the impact of haze pollution on the tourism industry. Although this 
method is challenging due to the lack of available data, it can be used as 
a valuable direction for future research. 
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